gcp-bigquery-client 0.13.0

An ergonomic async client library for GCP BigQuery.
Documentation

GCP BigQuery Client

An ergonomic Rust async client library for GCP BigQuery.

  • Support all BigQuery API endpoints (not all covered by unit tests yet)
  • Support Service Account Key authentication, workload identity and other yup-oauth2 mechanisms
  • Create tables and rows via builder patterns
  • Persist complex Rust structs in structured BigQuery tables
  • Async API

Features:

  • rust-tls (default): RUSTLS-based
  • native-tls: OpenSSL-based

Example

This example performs the following operations:

  • Load a set of environment variables to set $PROJECT_ID, $DATASET_ID, $TABLE_ID and $GOOGLE_APPLICATION_CREDENTIALS
  • Init the BigQuery client
  • Create a dataset in the GCP project $PROJECT_ID
  • Create a table in the previously created dataset (table schema)
  • Insert a set of rows in the previously created table via the BigQuery Streaming API. The inserted rows are based on a regular Rust struct implementing the trait Serialize.
  • Perform a select query on the previously created table
  • Drop the table previously created
  • Drop the dataset previously created
    // Init BigQuery client
    let client = gcp_bigquery_client::Client::from_service_account_key_file(gcp_sa_key).await;

    // Delete the dataset if needed
    let result = client.dataset().delete(project_id, dataset_id, true).await;
    if let Ok(_) = result {
        println!("Removed previous dataset '{}'", dataset_id);
    }

    // Create a new dataset
    let dataset = client
        .dataset()
        .create(
            Dataset::new(project_id, dataset_id)
                .location("US")
                .friendly_name("Just a demo dataset")
                .label("owner", "me")
                .label("env", "prod"),
        )
        .await?;

    // Create a new table
    let table = dataset
        .create_table(
            &client,
            Table::from_dataset(
                &dataset,
                table_id,
                TableSchema::new(vec![
                    TableFieldSchema::timestamp("ts"),
                    TableFieldSchema::integer("int_value"),
                    TableFieldSchema::float("float_value"),
                    TableFieldSchema::bool("bool_value"),
                    TableFieldSchema::string("string_value"),
                    TableFieldSchema::record(
                        "record_value",
                        vec![
                            TableFieldSchema::integer("int_value"),
                            TableFieldSchema::string("string_value"),
                            TableFieldSchema::record(
                                "record_value",
                                vec![
                                    TableFieldSchema::integer("int_value"),
                                    TableFieldSchema::string("string_value"),
                                ],
                            ),
                        ],
                    ),
                ]),
            )
            .friendly_name("Demo table")
            .description("A nice description for this table")
            .label("owner", "me")
            .label("env", "prod")
            .expiration_time(SystemTime::now() + Duration::from_secs(3600))
            .time_partitioning(
                TimePartitioning::per_day()
                    .expiration_ms(Duration::from_secs(3600 * 24 * 7))
                    .field("ts"),
            ),
        )
        .await?;
    println!("Table created -> {:?}", table);

    // Insert data via BigQuery Streaming API
    let mut insert_request = TableDataInsertAllRequest::new();
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 1,
            float_value: 1.0,
            bool_value: false,
            string_value: "first".into(),
            record_value: FirstRecordLevel {
                int_value: 10,
                string_value: "sub_level_1.1".into(),
                record_value: SecondRecordLevel {
                    int_value: 20,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 2,
            float_value: 2.0,
            bool_value: true,
            string_value: "second".into(),
            record_value: FirstRecordLevel {
                int_value: 11,
                string_value: "sub_level_1.2".into(),
                record_value: SecondRecordLevel {
                    int_value: 21,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 3,
            float_value: 3.0,
            bool_value: false,
            string_value: "third".into(),
            record_value: FirstRecordLevel {
                int_value: 12,
                string_value: "sub_level_1.3".into(),
                record_value: SecondRecordLevel {
                    int_value: 22,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;
    insert_request.add_row(
        None,
        MyRow {
            ts: OffsetDateTime::now_utc(),
            int_value: 4,
            float_value: 4.0,
            bool_value: true,
            string_value: "fourth".into(),
            record_value: FirstRecordLevel {
                int_value: 13,
                string_value: "sub_level_1.4".into(),
                record_value: SecondRecordLevel {
                    int_value: 23,
                    string_value: "leaf".to_string(),
                },
            },
        },
    )?;

    client
        .tabledata()
        .insert_all(project_id, dataset_id, table_id, insert_request)
        .await?;

    // Query
    let mut rs = client
        .job()
        .query(
            project_id,
            QueryRequest::new(format!(
                "SELECT COUNT(*) AS c FROM `{}.{}.{}`",
                project_id, dataset_id, table_id
            )),
        )
        .await?;
    while rs.next_row() {
        println!("Number of rows inserted: {}", rs.get_i64_by_name("c")?.unwrap());
    }

    // Delete the table previously created
    client.table().delete(project_id, dataset_id, table_id).await?;

    // Delete the dataset previously created
    client.dataset().delete(project_id, dataset_id, true).await?;

An example of BigQuery load job can be found in the examples directory.

Status

The API of this crate is still subject to change up to version 1.0.

List of endpoints implemented:

  • Dataset - All methods
  • Table - All methods
  • Tabledata - All methods
  • Job - All methods
  • Model - All methods (not tested)
  • Project (not tested)
  • Routine - All methods (not tested)

License